Chapter 14

Fluids



14.2 What is a Fluid?

« Fluid: Matter that flows under the influence of external forces
* Includes gases and liquids:
* In gases, molecules are far apart and the density changes readily.
* Inliquids, molecules are close together and density remains essentially constant.

» Fluids conform to the boundaries of and assume the configuration of any container
they are placed in:

« Afluid cannot sustain a force that is tangential to its surface -- cannot
withstand a shearing stress

« Can exert a force in the direction perpendicular to surface

« Cannot maintain a fixed structure



14.3 Density & Pressure

To find the density p of a fluid at any point, isolate a small The fluid exerts pressure
| | £V d that int q th internally as well as on the
volume element V around that point and measure the mass G e T s

m of the fluid contained within that element. If the fluid has pressure is the same in all
uniform density, then: directions:-..,

Density is a scalar property

Sl unit: kilogram per cubic meter (kg/m?3)

. ram per cubic centimeter (g/cm3); F is the force on the area 4,
o ?_ Cmge 1cc=1mL (@ ) so the pressure is p = F/A.

If the normal force exerted over a flat area A is uniform over
that area, then the pressure is defined as:
Sl unit: newton per square meter; pascal (Pa): 1 Pa=1 N/m?

1 atmosphere (atm) = 1.01x10° Pa = 101 kPa = 1013 mB =
760 mm Hg = 760 torr = 14.7 Ib/in? (psi)

Increasing pressure  Constant pressure



14.3 Density & Pressure

Some Densities

Material or Object Density (kg/m?) Material or Object Density (kg/m?)
Interstellar space 10-% Iron 7.9 x 107
Best laboratory vacuum 10-" Mercury (the metal, not the planet) 13.6 x 10°
Air:  20°C and 1 atm pressure 1.21 Earth: average 5.5 % 10°

20°C and 50 atm 60.5 core 9.5 % 10°
Styrofoam 110 crust 2.8 X 10°
Ice 0.917 x 10° Sun: average 1.4 x 10°
Water: 20°Cand 1 atm 0.998 x 10° core 1.6 X 10°

20°C and 50 atm 1.000 < 10° White dwarf star (core) 10"
Seawater: 20°Cand 1 atm 1.024 x 10° Uranium nucleus 3 x 107
Whole blood 1.060 x 10° Neutron star (core) 10"

Table 14-2

Some Pressures

Pressure (Pa) Pressure (Pa)
Center of the Sun 2 X 10' Automobile tire? 2 X 10°
Center of Earth 4 x 10" Atmosphere at sea level 1.0 X 10°
Highest sustained laboratory pressure 1.5 X 101 Normal blood systolic pressure®® 1.6 % 10°
Deepest ocean trench (bottom) 1.1 X 108 Best laboratory vacuum 10-
Spike heels on a dance floor 10°

“Pressure in excess of atmospheric pressure. “Equivalent to 120 torr on the physician’s pressure gauge.



Example: Atmospheric Pressure & Force

A living room has floor dimensions of 3.5 m and 4.2 m and a
height of 2.4 m.

(a) What does the air in the room weigh when the air pres-
sure 1s 1.0 atm?

KEY IDEAS

(1) The air's weight 1s equal to mg, where m 1s its mass.
(2) Mass m 1s related to the air density p and the air volume

VbyEq.142(p = mlV),

Calculation: Putting the two ideas together and taking the
density of air at 1.0 atm from Table 14-1, we find

mg=(pV)g
= (120 kg/m)(35m X 42 m X 24 m)(9.8 mis?)
= 418N~ 420N, (Answer)

This is the weight of about 110 cans of Pepsi.

(b) What is the magnitude of the atmosphere’s downward
force on the top of your head, which we take to have an area
o 0.040 m’?

KEY IDEA

When the fluid pressure p on a surface of area A is uniform,
the fluid force on the surface can be obtained from Eq. 14-4

(= FIA),

Calculation: Although air pressure varies daily, we can
approximate that p = 1.0 atm. Then Eq. 14-4 gives

101 X 10° Nim?

1.0 atm

F=pA=(10 atm)( )(0.040 m)

=40 X 10°N. (Answer)

This large force 1s equal to the weight of the air column from
the top of your head to the top of the atmosphere.



14.4: Fluids at Rest (fluid statics/hydrostatics)

Three forces act on
this sample of water.

Fig. 14-2 Above: A tank of water in
which a sample of water is contained
in an imaginary cylinder of horizontal

base area A.

Below: A free-body diagram of

the water sample.
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The three forces

The pressure at a point in a fluid in hydrostatic equilibrium
depends on the depth of that point but not on any horizontal
dimension of the fluid or its container.

The balance of the 3 forces is written as: ‘Fﬂ — F] + g,

If p; and p, are the pressures on the top and the bottom

surfaces of the sample:
Fi=pA and F, =p,A

Since the mass m of the water in the cylinder is, m = pV, where
the cylinder’s volume V is the product of its face area A and its

height (y; - y,), then m = pA(y;-y,).
DA = 1A + pAg(yy — »)

Therefore,
P2 = prt+ pg(y1 — ¥2).
If y, is at the surface and y, is at a depth h below the surface,
then:
p = po + pgh

(where p, is the pressure at the surface, and p the pressure at
depth h).




Example:

Gauge pressure on a scuba diver

A novice scuba diver practicing in a swimming pool takes
enough air from his tank to fully expand his lungs before
abandoning the tank at depth L and swimming to the sur-
face. He ignores instructions and fails to exhale during his
ascent. When he reaches the surface, the difference between
the external pressure on him and the air pressure in his
lungs 1s 9.3 kPa. From what depth does he start? What po-
tentially lethal danger does he face? s 3

KEY IDEA

The pressure at depth /2 in a liquid of density p is given by
Eq. 14-8 (p = py + pgh), where the gauge pressure pgh is
added to the atmospheric pressure p;.

Calculations: Here, when the diver fills his lungs at
depth L, the external pressure on him (and thus the air
pressure within his lungs) is greater than normal and
given by Eq. 14-8 as

p=pot+pgl.

where p; is atmospheric pressure and p is the water’s density

(998 kg/m’, from Table 14-1). As he ascends, the external
pressure on him decreases, until it is atmospheric pressure
pq at the surface. His blood pressure also decreases, until it is
normal. However, because he does not exhale, the air pres-
sure in his lungs remains at the value it had at depth L.
At the surface, the pressure difference between the higher
pressure in his lungs and the lower pressure on his chest is

Ap=p-py=pgL.
from which we find
L 9300 Pa
Copg (998 kg/m’)(9.8 m/sd)
=0.95 m. (Answer)

This 1s not deep! Yet, the pressure difference of 9.3 kPa
(about 9% of atmospheric pressure) 1s sufficient to rupture
the diver’s lungs and force air from them into the depressur-
ized blood, which then carries the air to the heart, killing the
diver. If the diver follows instructions and gradually exhales
as he ascends, he allows the pressure in his lungs to equalize
with the external pressure, and then there is no danger.



Example:

The U-tube in Fig. 14-4 contains two liquids in static equilib-
rium: Water of density p,, (= 998 kg/m’) is in the right arm,
and oil of unknown density p, is in the left. Measurement
gives [ = 135 mm and d = 12.3 mm. What is the density of
the oil?

KEY IDEAS

(1) The pressure p, at the level of the oil-water interface in
the left arm depends on the density p, and height of the oil
above the interface. (2) The water in the right arm ar the
same level must be at the same pressure p,,. The reason is
that, because the water is in static equilibrium, pressures at
points in the water at the same level must be the same even if
the points are separated horizontally.

Calculations: In the right arm, the interface is a distance / be-
low the free surface of the water, and we have, from Eq. 14-8,
Pine=Pot py8l

In the left arm, the interface 1s a distance [ + d below the free
surface of the oil, and we have, again from Eq. 14-8,

(right arm).

Pt = Po + pegll + d)  (leftarm).

o]

This much oll

balances... ... this much

& water.

—_— —

@

Fig. 14-4 The oil in the left arm stands higher than the water in
the right arm because the oil is less dense than the water. Both fluid

columns produce the same pressure p;,, at the level of the interface.

Equating these two expressions and solving for the un-
known density yield

[ 135 mm
= p,—— = (998 ko/m?
b= o = (98kem)

135mm + 12.3mm

= 915 kg/m’. (Answer)

Note that the answer does not depend on the atmospheric
pressure py or the free-fall acceleration g.



14.5: Measuring Pressure: The Mercury Barometer

y
A Hg barometer is a device used to

=) *
/p p:ElY\ measure the pressure of the

Level2 | | atmosphere.
( « The long glass tube is filled with
: Hg and the space above the Hg
column contains only Hg vapor,
whose pressure can be neglected.

—:I I::I | « If the atmospheric pressure is p,

(a) (b) and p is the density of Hg:

Fig. 14-5 (a) A mercury barometer. (b) Another
mercury barometer. The distance h is the same
in both cases.




14.5: Measuring Pressure: The Open-Tube Manometer

Manometer

Fig. 14-6 An open-tube manome-
ter, connected to measure the gauge
pressure of the gas in the tank on the

left. The right arm of the U-tube 1s
open to the atmosphere.

An open-tube manometer measures the
gauge pressure p, of a gas.

Consists of a U-tube containing a liquid,
with one end of the tube connected to the
vessel whose gauge pressure is to
measured and the other end open to the
atmosphere.

If p, Is the atmospheric pressure, p is the
pressure at level 2 as shown, and p is the
density of the liquid in the tube, then:

Py =P — Po = pgh,




14.6: Pascal’s Principle

A change in the pressure applied to an enclosed incompressible
fluid is transmitted undiminished to every portion of the fluid and

to the walls of its container.
Lead shot

r Piston
e e I

i FC'.'C[

Fig. 14-7 Lead shot (small balls of lead)
loaded onto the piston create a pressure
P.y at the top of the enclosed (incompress-
ible) liquid. If p_,, i1s increased, by adding
more lead shot, the pressure increases by
the same amount at all points within the

liquid.



14.6: Pascal’s Principle & the Hydraulic Lever

» The force F; is applied on the left and the downward

force F, from the load on the right produce a change ... a large output

Ap in the pressure of the liquid that is given by: force.
Ap — F, F, A small input Output ﬂ?
P = A, A force produces ... ’
A Input E A
F,=FE— -
A, J

 If the input piston is moved downward a distance d,,
the output piston moves upward a distance d,, such
that the same volume V of the incompressible liquid

is displaced at both pistons.
V = A,d;, = A,d,,
Fig. 14-8 A hydraulic arrangement that
A, can be used to magnify a force F;. The work
iT4 done is, however, not magnified and is the
@ same for both the input and output forces.

* Then the output work is:

A-::r Ai o

d, = d




14.7: Archimedes Principle

When a body is fully or partially submerged in a fluid, a buoyant force from the
surrounding fluid acts on the body.

The force is directed upward and has a magnitude equal to the weight of the fluid
that has been displaced by the body.

The upward buoyant The net upward force on the object is the

force on this sack of buoyant force, F,.

water equals the

weight of the water. The buoyant force on a body in a fluid has the
o o magnitude:

F,=m.g (buoyant force),

L ‘ where m; is the mass of the fluid that is
displaced by the body.

Fig. 14-9 A thin-walled plastic sack of water is in static
equilibrium in the pool. The gravitational force on the
sack must be balanced by a net upward force on it from
the surrounding water.



14.7: Archimedes Principle: Floating & Apparent Weight

When a body floats in a fluid, the magnitude F, of the
buoyant force on the body is equal to the magnitude
F, of the gravitational force on the body:

F, =F,

When a body floats in a fluid, the magnitude F, of the
gravitational force on the body is equal to the weight
m.g of the fluid that has been displaced by the body,

where m; is the mass of the fluid displaced:

F, = mg
A floating body displaces its own weight of fluid.

The apparent weight of an object in a fluid is less than the
actual weight of the object in vacuum, and is equal to the
difference between the actual weight of a body and the
buoyant force on the body.

actual
welght

apparent
welght

magnitude of
buoyant force

This fluid is

in equilibrium,
so the pressure
force F,
balances

its weight Eg‘

[~ Replace the

fluid with a
solid object,
and the
pressure force
doesn’t change.
But the weight
may.



14.7: Archimedes Principle: Floating & Apparent Weight

Floating and sinking

« If a submerged object is less dense than
a fluid, then the buoyancy force is greater
than its weight, and the object rises.

* In aliquid, it eventually reaches the
surface.

« Then the object floats at a level such
that the buoyancy force equals its
weight.

« That means the submerged portion
displaces a weight of liquid equal to
the weight of the object.

* Inthe atmosphere, a buoyant object like a
balloon rises to a level where its density
is equal to that of the atmosphere.

« This is neutral buoyancy.



Clicker question

Which one of the following does not contribute to a
rise in sea level?

A. Melting of pack ice in the Arctic Ocean
B. Warming of ocean water in the Pacific Ocean

C. Melting of ice supported by land in Greenland

>



Example: Floating, buoyancy, & density

In Fig. 14-11, a block of density p = 800 kg/m? floats face (b) If the block is held fully submerged and then released,
down in a fluid of density p; = 1200 kg/m?® The block has what is the magnitude of its acceleration?
height H = 6.0 cm.

(a) By what depth £ 1s the block submerged?

Floating means
that the buoyant
force matches the

gravitational force. C PfLWHg - PLWHg - PLWHH

Eﬁl@ I = (ﬁ _ 1)g - (1200 kgl _ 1)(9.8 ns)

p 800 kg/m*
Fy = myg = pVig = p LWhg. = 40/ (Answer)

C Fy — F, = ma.

Fig. 14-11

Fo =mg = pVg = p,LWHg. )

F, — F, = m(0),
po

p 800 kg/m? D
h="LpH-= 6.0
pr 1200 ke/m?® 00 €™

= 4.0 cm.

p.Whg — pLWHg = 0,




14.8: Ideal Fluids in Motion (Fluid Dynamics)

Steady flow: In steady (or laminar) flow,
the velocity of the moving fluid at any
fixed point does not change with time.

Incompressible flow: Assume, as for
fluids at rest, that the ideal fluid is
incompressible; density has a constant,
uniform value.

Nonviscous flow: The viscosity of a fluid
Is a measure of how resistive the fluid is
to flow.

» Viscosity is the fluid analog of
friction between solids.

* An object moving through a
nonviscous fluid would experience
no viscous drag force

» No resistive force due to viscosity;
can move at constant speed through
the fluid.

Irrotational flow: In irrotational flow a
test body suspended in the fluid will not
rotate about an axis through its own
center of mass.

Moving fluids are characterized by their flow
velocity as a function of position and time.

— In steady flow, the velocity at a given point
is independent of time.

— Steady flows can be visualized with
streamlines which are everywhere tangent
to the local flow direction.

— The density of streamlines reflects the flow
speed.

Flow speed is higher
where streamlines
are closer._

— Inunsteady flow, the fluid velocity at a
given point varies with time.

— Unsteadv flows are more difficult to treat.



14.9: The Equation of Continuity

The volume flow per
second here must
match ...

0

N ... the volume flow
per second here.

(B) Time ¢+ At

Fig. 14-15 Fluid flows from left to
right at a steady rate through a tube seg-
ment of length L. The fluid’s speed is v, at
the left side and v, at the right side. The
tube’s cross-sectional area 1s A, at the left
side and A, at the right side. From time r in
(a) to time ¢ + At in (b), the amount of
fluid shown in purple enters at the left side
and the equal amount of fluid shown in
green emerges at the right side.

AV = A Ax = Av At
AV = A]l’l A = Agl’g At
Allf'] — AEUE

(equation of continuity).

Incompressible fluids (constant density):

Ry = Av = a constant

R, = pRy = pAv = a constant

(mass flowrate),




Example: Water Stream

Figure 14-18 shows how the stream of water emerging from
a faucet “necks down” as it falls. This change in the horizontal
cross-sectional area is characteristic of any laminar (non-
turbulant) falling stream because the gravitational force
increases the speed of the stream. Here the indicated
cross-sectional areas are Ay =12cm? and A =0.35cm?
The two levels are separated by a vertical distance /i = 45 mm.
What is the volume flow rate from the tap?

m

The volume flow per

T\ '} K second here must
Mﬁ"? match ...

T—Ao
Iy

Fig. 14-18 Aswater falls from a tap, its speed
increases. Because the volume flow rate must be
the same at all horizontal cross sections of the
stream, the stream must “neck down” (narrow).

.. the volume flow
per second here.

KEY IDEA

The volume flow rate through the higher cross section must
be the same as that through the lower cross section.

Calculations: From Eq. 14-24, we have
Agvy = Av, (14-26)

where v and v are the water speeds at the levels correspond-
ing to Ay and A. From Eq. 2-16 we can also write, because the
water is falling freely with acceleration g,

v =} + 2gh. (14-27)

Elimimating v between Egs. 14-26 and 14-27 and solving for
vy, we obtain

2ghA
vy = F
B \/ (2)(9.8 m/s%)(0.045 m)(0.35 cm*)*
(1.2 em?)? — (0.35 cm?)?

= ().286 m/s = 28.6 cm/s.

From Eq. 14-24, the volume flow rate Ry is then
Ry = Agvy = (1.2 cm?)(28.6 cm/s)

= 34 cmfs. (Answer)



14.10: Bernoulli’s Equation

y Fig. 14-19: Fluid flows at a steady rate through a length
L of a flow tube, from the input end at the left to the
output end at the right.

From time t in (@) to time t + At in (b), the amount of fluid
shown in purple enters the input end and the equal
amount shown in green emerges from the output end.

l l
Py 450V + pgyy = Py 5V + pgvy

Pt %pv2 +pgy = aconstant  (Bernoull'sequation).

If the speed of a fluid element increases as the
- element travels along a horizontal streamline, the
Output pressure of the fluid must decrease, and conversely.

t+ At

(&)



14.10: Bernoulli’s Equation: Proof

The change in kinetic energy of the system is equal to
the work done on the system:

W = AK,
If the density of the fluid is p,

_1x02 1p. 9
AK =3Am v; — 5Am vi
_ 1 2 _ 2

= 2p AV(vz — v1),

The work done by gravitational forces is:

Wg = —Am g(y, — 1)
= —pg AV(y, — »).

— The net work done by the fluid is:
e WP=—pgAV-I-p1&V
= =(p,—p)AV.

Dutput

t+ At i Therefore, W - WH '|' Wﬂ - AK
* Finally, —pgAV(y,—y) - AV(p,-py) = %PWU’% - V%)-

(b)



14.10: Bernoulli’s Equation

The Bernoulli effect

.- High v, low p

» For flows that don’t involve height differences,
Bernoulli’'s equation shows that higher flow
speeds are accompanied by lower pressures,
and vice versa.

Gauge measures Ap.

Aa
\
\
AT — ¢
, /
/
Low Vv, High v, Low v, high p-"
hgh P low P

The ping-pong ball is supported by the
downward flowing air in the inverted
funnel, because of the higher pressure of
the slower-moving air beneath the ball.

The venturi flow meter is one application of the
Bernoulli effect. Measuring the pressure difference
between the constriction and the unconstricted pipe
gives a measure of the flow speed.



14.10: Bernoulli’s Equation
Viscosity & turbulence

* Viscosity: fluid friction

— Associated with the transfer of
momentum by molecules moving
perpendicular to the fluid flow

— Also occurs where a fluid contacts
pipe walls, river banks, and other ;
material containers =

— Dissipates flow energy )

(@)
Right at wall, fluid is at rest.

« Turbulence: complex, chaotic, time- -
dependent fluid motion.

(b)

Without viscosity, flow in a pipe would be
uniform. Viscous drag at the pipe walls
introduces a parabolic flow profile.




Example: Bernoulli’s Principle

Ethanol of density p = 791 kg/m? flows smoothly through a
horizontal pipe that tapers (as in Fig. 14-15) in cross-sec-
tional area from A; =120X 107 m? to A, = A,/2. The
pressure difference between the wide and narrow sections
of pipe is 4120 Pa. What is the volume flow rate Ry of the
ethanol?

KEY IDEAS

(1) Because the fluid flowing through the wide section of
pipe must entirely pass through the narrow section, the vol-

ume flow rate Ry must be the same in the two sections. Thus,
from Eq. 14-24,

RV = 'lr'lx‘fll = 1*'214.2. {14-35)

However, with two unknown speeds, we cannot evaluate
this equation for Ry. (2) Because the flow is smooth, we can
apply Bernoulli’s equation. From Eq. 14-28, we can write

i+ 3oV + pgy = py + 3pv3 + pgy. (14-36)
where subscripts 1 and 2 refer to the wide and narrow
sections of pipe, respectively, and y is their common eleva-
tion. This equation hardly seems to help because it does not

contain the desired Ry, and it contains the unknown speeds
vy and v,.

Calculations: There is a neat way to make Eq. 14-36 work
for us: First, we can use Eq. 14-35 and the fact that A, = A,/2

to write

R R
vy = A—V and v, = A—V
1 2

2R
=—" (14-37)
A
Then we can substitute these expressions into Eq. 14-36 to
eliminate the unknown speeds and introduce the desired vol-
ume flow rate. Doing this and solving for Ry, yield

2(p,—p
Ry = A | 2( 13p z)_

We still have a decision to make: We know that the pres-
sure difference between the two sections is 4120 Pa, but
does that mean that p; — p, is 4120 Pa or —4120 Pa? We
could guess the former Is true, or otherwise the square root
in Eq. 14-38 would give us an imaginary number. Instead of
guessing, however, let’s try some reasoning. From Eq. 14-35
we see that speed v, in the narrow section (small A,) must
be greater than speed v, in the wider section (larger A,).
Recall that if the speed of a fluid increases as the fluid trav-
els along a horizontal path (as here), the pressure of the
fluid must decrease. Thus, p, is greater than p,,and p; — p, =
4120 Pa. Inserting this and known data into Eq. 14-38 gives

(14-38)

. [[()@E120Pa)
(3)(791 kg/m’)

(Answer)

Ry =120 X 10>m

=224 X 107> m?¥s.



Example-2: Bernoulli’s Principle

In the old West, a desperado fires a bullet into an open water
tank (Fig. 14-20), creating a hole a distance h below the water
surface. What is the speed v of the water exiting the tank?

Fig. 14-20

Flg 1 4 ED Water pours
through a hole in a water
tank, at a distance h below
the water surface. The
pressure at the water
surface and at the hole 1s
atmospheric pressure p,.

Ry = av = Ay,

a

and thus vy = 7 V.

Because a < A, we see that vy < v. To apply Bernoulli’s equa-
tion, we take the level of the hole as our reference level for
measuring elevations (and thus gravitational potential en-
ergy). Noting that the pressure at the top of the tank and at
the bullet hole is the atmospheric pressure p, (because both
places are exposed to the atmosphere), we write Eq. 14-28 as

po +3pv5 + pgh = po + 3% + pg(0).  (14-39)

(Here the top of the tank is represented by the left side of
the equation and the hole by the right side. The zero on the
right indicates that the hole is at our reference level.)
Before we solve Eq. 14-39 for v, we can use our result that
vy < v to simplify it: We assume that v§, and thus the term

%pv% in Eq. 14-39, is negligible relative to the other terms,

and we drop it. Solving the remaining equation for v then
yields

= V2gh. (Answer)

This is the same speed that an object would have when
falling a height i from rest.



